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Abstract— This paper presents an analytical approach for
the implementation of high quality-factor ( Q) resonators with
arbitrary cross-sectional vibration mode shapes in anisotropic
single-crystal substrates. A closed-form dispersion relation is ana-
lytically derived to characterize the dynamics of guided waves in
rectangular waveguides. Three categories of waves with propagat-
ing, standing-evanescent, and propagating-evanescent dynamics
are identified and used for energy localization of acoustic excita-
tions with arbitrary cross-sectional vibration patterns. An ana-
lytical design procedure is presented for dispersion engineering
of waveguides to realize high- Q resonators without the need for
geometrical suspension through narrow tethers or rigid anchors.
The effectiveness of the dispersion engineering methodology is
verified through the development of experimental test vehicles
in 20-µm-thick single-crystal silicon substrate with 500-nm alu-
minum nitride transducers. Various proof-of-concept resonators,
representing guided waves with different dispersion types, are
presented and compared to highlight the optimum design pro-
cedures for Q enhancement and spurious mode suppression.
Part I of this paper presents the operation principle of guided-
wave resonators based on the analytical derivation of dispersion
relation followed by a systematic resonator design procedure.
Numerical and experimental characterizations for verification of
the proposed design procedure and extensive measurement data
on proof-of-concept resonators are presented in Part II.

Index Terms— Acoustic energy localization, dispersion engi-
neering, guided-wave dispersion anisotropic single-crystal sub-
strate, high- Q, lamb wave dispersion, micromechanical resonator.

I. INTRODUCTION

THE emerging 5G wireless communication systems target
operation in multiband carrier aggregation schemes to

fulfill the ever-growing need for higher data rates and com-
munication capacity [1], [2]. To realize multiband wireless
systems, there is an urgent need for high quality-factor (Q)
resonator technology with lithographical frequency definition
capability. These resonators enable single-chip integration of
radio frequency front-end (RFFE) filters, and frequency refer-
ences needed for configurable data communication over a wide
frequency spectrum. Various micromechanical resonator tech-
nologies operating in in-plane vibration modes are introduced
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and developed over the past decade to provide the required
lithographical frequency scalability [3]–[9]. Although capable
to meet current RFFE requirements, these technologies fail
to provide an analytical design methodology that sustains the
major resonator performance metrics, i.e., high Q and electro-
mechanical coupling coefficient (k2

t ), over extreme frequency
scaling in ultra/super-high-frequency (UHF/SHF) regimes with
current fabrication limitations.

To reduce the impact of Q degradation over extreme fre-
quency scaling, a recent wave of research and development
has targeted the use of single-crystal substrates and films
that offer substantially lower acoustic dissipation compared
to sputtered piezoelectric films, to enable the realization of
high-performance filters, duplexers, and frequency references
over and beyond the UHF regime [10]–[18]. Besides opting
for low-loss substrates, a frequency scalable design strat-
egy that enables uniform acoustic energy localization within
the electromechanical transduction area is the fundamental
requirement for the realization of resonators with high Q and
k2

t over a wide spectrum of interest on a single chip.
Since the advent of in-plane micromechanical resonators,

various design approaches targeting energy localization of bulk
acoustic waves (BAW) in geometrically suspended microstruc-
tures to realize high-Q resonators have been demonstrated
[3]–[6], [19]–[23]. Such localization is realized through defin-
ition of stress-free or fixed boundaries surrounding a released
microstructure. In these approaches, the vibration mode shape
must contain a naturally formed or an artificially forced
nodal point, line, or face to facilitate anchoring the res-
onator to the surrounding substrate through narrow teth-
ers or clamped surfaces. For resonators operating in the
lateral mode of vibration, the resonance frequency is inversely
proportional to lithographically defined dimensions. Therefore,
radical frequency scaling of these resonators requires the
proportional downscaling of the nodal tethers. In practice,
the proportional miniaturization of narrow tethers connected
to nodal points or formation of ideal rigid anchors for
facial clamping is bounded by fabrication limitations such
as lithography resolution or undercut in the cavity formation.
Furthermore, these techniques are not systematically scalable
to all resonators on the same substrate since changing the
lateral frequency-defining dimensions, while having a constant
thickness, induces substantial transformation of the vibration
modes [24]. This transformation may exclude the desired nodal
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point or degrade electromechanical transduction efficiency,
thus imposing the need for customized geometrical and trans-
ducer design for each desired frequency.

The first part of this paper presents an analytical method-
ology, based on dispersion characteristics of guided waves in
anisotropic single-crystal substrates, which enables the system-
atic design of high-Q resonators with arbitrary cross-sectional
mode shapes and frequencies. For the first time, the guided-
wave dispersion relation is derived for rectangular waveguides
implemented in anisotropic single-crystal substrates with the
rectangular cross section. The identified dispersive propagat-
ing and evanescent waves can be used for designing high-
Q and k2

t resonator through efficient energy localization
without the need for geometrical suspension. The resulting
dispersion-engineered resonators are anchored through wide
tethers that encompass negligible mechanical energy density,
hence, reducing anchoring energy leakage, while enhancing
power handling and linearity [25]. Furthermore, such wide
tethers enable the integration of multiple electrodes for simul-
taneous multimode excitation [26] or heterogeneous integra-
tion with transistors to realize the resonant body electronic
components [27].

II. GUIDED-WAVE DISPERSION IN ANISOTROPIC

SINGLE-CRYSTAL WAVEGUIDES

Harmonic excitations in an infinitely long waveguide with
finite-cross-sectional dimensions are limited to a discrete set
of propagating and standing waves, i.e., guided waves, with
specific frequencies and wavenumbers. The linear superpo-
sition of guided waves at a specific frequency can form a
vibration mode, when the waveguide is properly terminated
at the two ends. Therefore, the identification of the guided
waves and their dispersion characteristics (i.e., the relationship
between their frequency and wavenumber) along with proper
termination of the waveguide enables analytical synthesis of
vibration modes.

For a waveguide with rectangular cross section implemented
in an anisotropic single-crystal solid [Fig. 1(a)], wave propa-
gation dynamics are governed by the equation of motion [28],
limited by the stress-free boundary condition (B.C.) at the
peripheral faces and is mathematically defined through

⎧
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where �U(x, y, z, t) is the 3-D displacement vector and ∇. is
the divergence operator matrix defined by
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Fig. 1. (a) Infinitely long waveguide with rectangular cross section, extended
in the z-direction. H and W are the height and width of the cross section of
waveguide. (b) Cross-sectional mode patterns for different guided waves.

where ∇ is the gradient matrix operator, which is the transpose
of ∇. (i.e., ∇. = ∇T ). C is the elastic constant matrix for an
arbitrary anisotropic material along major crystal axis, in the
Voigt notation
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where ci j coefficients are assumed to be real numbers. ρ
is the mass density; σi (i = 1 − 6) are the components of
stress vector in the Voigt notation; finally, H and W are
the height and width of the cross section of the waveguide
that is centrosymmetric to origin and extended in the
z-direction (Fig. 1).

Equation (1) can be solved for displacement vectors of
�U = ��(x, y)ei(kz−ωt) to identify the cross-sectional vibration

vector (i.e., ��(x, y) =
⎡

⎣
Ux(x, y)
Uy(x, y)
Uz(x, y)

⎤

⎦) and the corresponding

frequency–wavenumber pair [i.e., (ω, k)] of the allowed har-
monic and collective excitations in the waveguide. Such a
solution set defines the dispersion characteristics of the guided
waves.

The dispersion characteristics of the guided waves in iso-
topic plate waveguides (i.e., W → ∞) can be analyti-
cally extracted using the displacement potentials [29]. In this
approach, the propagation dynamics of extensional and shear
constituents of the guided waves can be uncoupled, result-
ing in the straightforward derivation of a closed-form dis-
persion relation [29]. Unlike isotropic solids, in anisotropic
waveguides, dynamics of extensional and shear waves are
inherently coupled. Therefore, a similar approach is not
applicable for the extraction of dispersion relation. This section
presents the formulation for extraction of the dispersion rela-
tion for symmetric guided waves in waveguides implemented
in anisotropic single-crystal substrates. The equation of motion
in (1) is solved for the two extreme cases of plane strain (i.e.,
H/W → ∞) and plane stress (i.e., H/W → 0). These con-
ditions reduce the complexity of wave dynamics and facilitate
the derivation of closed-form dispersion relations.
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A. Plane Strain
In the plane-strain case, the displacement in the y-direction

nulls out. Therefore, the cross-sectional vibration vector is
reduced to

��(x, y) =
⎡

⎣
Ux(x, y)

0
Uz(x, y)

⎤

⎦.

Furthermore, the boundary condition of (1) is limited to
σi=1,5,6(±(W/2), y, z) = 0. Therefore, in the plane-strain
case, (1) reduces to a system of two coupled complex dif-
ferential equations
⎧
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The harmonic solution space for the system of differential
equations in (4) includes the following symmetric cross-
sectional vibration modes:

{
Ux = f1 Ax sin(p1x) − i f2 Azsin(p2x)
Uz = i f3 Ax cos(p1x) + f4 Az cos(p2x)

}

(5)

wherein, p1 and p2 are the characteristic roots defined by

(c11 p2 − ρω2 + c55k2)(c55 p2 − ρω2 + c33k2)

= p2k2(c13 + c55)
2 (6)

and fi (i = 1–4) are related through
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Applying the boundary conditions at the stress-free periph-
eral faces of the waveguide (i.e., σi=1,5,6 (±(W/2), y, z) = 0)
to the solution in (5) yields (8) as shown at the bottom of this

page. To have nonzero solutions for

[
Ax

Az

]

, (9) as shown at

the bottom of this page, should hold true, which further yields
the dispersion relation given by (10), as shown at the bottom
of this page.

B. Plane Stress

In the plane-stress case, stress components in the y-direction
are 0 (i.e., σi=2,4,6 (x,±(H/2), z) = 0). Taking a similar
approach to the plane-stress case for symmetric guided modes
yields the dispersion relation given by (11) as shown at the
bottom of this page. The complexity of dispersion relation in
the anisotropic plate and waveguide is clear when compared
to the isotropic plates, that is derived as [29]
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A MATLAB code, based on the bisection method [30],
is used to extract the dispersion diagram [i.e., ( f = (ω/2π),
k)] from (10) and (11). Fig. 2(a) and (b) demonstrates the
extracted dispersion diagram for the first three branches of
symmetric guided waves for plane-stress and plane-strain
cases, for waveguides with 50-μm width and aligned to
〈100〉 and 〈110〉 crystallographic orientation of (100) silicon
plate. It is evident that apart from the S0 guided waves
that originate at ( f, k) = (0, 0), other symmetric modes
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Fig. 2. Extracted dispersion characteristics for the three symmetric modes in a waveguide with 50-μm width, for plane-stress and plane-strain cases in
(a) 〈100〉 and (b) 〈110〉 crystallographic orientation of (100) single-crystal silicon (SCS) substrate. Apart from the propagating waves with real wavenumber
(kz = k; k ∈ R), S1 and S2 have standing-evanescent waves with pure imaginary wave numbers (kz = ik; k ∈ R). S1 has an additional branch of propagating-
evanescent wave with complex wavenumbers (kz = k1 + ik2; k1 and k2 ∈ R) originating from the zero-group velocity point of the branch. (c) Corresponding
vibration mode shapes to the propagating, standing-evanescent, and propagating-evanescent waves for S1 branch, along with their axial propagation function
across the waveguide length.

have imaginary and/or complex wavenumbers. Also, it is
worth noting that while S0 and S2 follow type-I dispersion
characteristics, S1 exhibits type-II dispersion characteristics
up to the guided wave with zero-group velocity (i.e., k =
kZG where (∂ f /∂k)|k=kZ G = 0). For S1 guided waves
with k > kZG, S1 manifests type-I dispersion [31], [32].
Finally, there exist an extension to the S1 branch, originat-
ing from kZG, which represents wavenumbers with complex
values (called complex branch, hereafter) and meets f = 0
plane perpendicularly. Therefore, the extraction of the guided
waves dispersion characteristics in anisotropic single-crystal
waveguides identifies three categories of propagating and
evanescent solutions: 1) the propagating waves with real
wavenumber k = kreal; 2) standing-evanescent waves with
purely imaginary wavenumber k = ikimag; and 3) propagating-
evanescent waves with complex wavenumbers k = kreal +
ikimag. Considering imaginary ci j coefficients in (3) and, thus,
the dissipation constants alters the evanescent wave solutions
but for the ease of analysis and constraining to the scope
of discussion of the paper, we assume ci j coefficients to
be real numbers. The displacement function of these three
categories is schematically shown in Fig. 2(c). The existence of
evanescent solutions provides an acoustic means for the energy
localization without the need for geometrical suspension as
shown previously for thickness modes [33], [34]. Section III
presents an analytical design procedure for synthesis of high-
Q resonators using propagating and evanescent guided waves
in anisotropic waveguides.

III. DISPERSION ENGINEERING FOR ACOUSTIC

ENERGY LOCALIZATION

As evident in dispersion diagrams shown in Fig. 2, the S0
branch initiates from the origin of (ω, k) space, while branches
to other waves originate at (ω 	= 0, kBAW = 0). While most
branches include both propagating (i.e., k ∈ R) and standing-
evanescent (i.e., ik ∈ R) sections, in some cases, such as the

S1 branch, there exists an extension representing propagating-
evanescent waves with complex wavenumber (i.e., k = k1 +
ik2; k1 and k2 ∈ R).

A set of guided waves with different cross-sectional pat-
terns, ��i (x, y), can be simultaneously excited at a specific
frequency to form a standing vibration mode. In a generic def-
inition, a 3-D standing vibration mode, ��(x, y, z, t), is created
through the linear superposition of bidirectional propagating
and propagating-evanescent waves, in addition to standing-
evanescent waves

��(x, y, z, t)

= Re

{
∑

m

Am ��m(x, y)[ei(km z−ωt) + ei(−km z−ωt)] +
∑

n

Bn

��n(x, y)e−kn zei(−ωt) +
∑

p

Bp ��p(x, y)ekp zei(−ωt)

}

(13)

where Am and Bn,p are the weighting coefficients for the
propagating/propagating-evanescent and standing-evanescent
waves, respectively, and are defined by the excitation scheme
(i.e., distribution and placement of excitation sources). The
weighting coefficients can be engineered with proper transduc-
tion schemes and waveguide termination strategies to ensure
the suppression of undesired guided waves or reduce their
corresponding amplitude, thus limiting the excitations to a
specific guided wave with desired cross-sectional pattern.
In this case, (13) can be simplified to

��i (x, y, z, t) = ��i (x, y)�i(z) cos(ωt) (14)

where �i (z) is the generalized axial mode shape defined by

�i (z) = Ai cos(ki,1z) + Bi e
−ki,2 z + Ci cos(ki,3z)e−ki,4 z (15)

wherein, ki,1, iki,2, and ki,3 + iki,4 are the wavenumbers of the
propagating, standing-evanescent, and propagating-evanescent
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Fig. 3. Dispersion-engineered waveguide composed from three regions
with different dispersion characteristics realized by (a) changing the width
and (b) adding/removing surface mass, across the length. The changing
in width or material composition transforms the corresponding dispersion
characteristics of the constituent regions and limits the solution space for
harmonic excitations through imposing additional boundary conditions.

guided waves corresponding to the dispersion branch of inter-
est, at frequency ω. Also, depending on the extension of the
corresponding dispersion branch in the (ω, k) space, one or all
the weighting constants may vanish and are chosen to local-
ize the desired mode shape in the waveguide. Finally, (15)
assumes the placement of a centrosymmetric excitation source
at the origin.

While the axial mode shape �i (z) is extended infinitely over
the length of the waveguide, realization of a high-Q resonance
mode requires energy localization in a finite length. This can
be achieved through engineering the dispersion characteristics
of the waveguide across its length, to nullify the weighting
coefficient corresponding to propagating waves [i.e., A in (15)]
in regions alongside the excitation source.

The dispersion characteristics of the guided waves depend
on the elastic properties and mass density of the consti-
tuting materials, as well as the cross-sectional geometry of
the waveguide. Therefore, any change in the cross-sectional
dimensions or material composition results in a transformation
of the dispersion curves. Fig. 3 schematically demonstrates
the dispersion-engineered waveguides that are created by the
variation of the cross-sectional dimensions or the introduction
of peripheral mass-loading, across the length.

To formulate the guided-wave dynamics, a dispersion-
engineered waveguide can be interpreted as a set of rec-
tangular waveguides with finite length that are acoustically
coupled by cascading them in the length direction. This
coupling significantly limits the solution space for harmonic
excitations by imposing additional boundary conditions to the
constituent waveguides. The additional boundary conditions
are the continuity of particle displacement and strain at the
transitional faces between cascaded waveguides. Considering
an appropriate design that satisfies the boundary conditions,
an axial mode-shape function �i (z) of dispersion-engineered
waveguides shown in Fig. 3 can be formulated by

�i (z) =
⎧
⎨

⎩

K1�i,1(|z|) z ∈ Region I
K2�i,2(|z| − z1) z ∈ Region II

K3�i,3(|z| − z1 − z2) z ∈ Region III

⎫
⎬

⎭
(16)

wherein, �i,1−3(z) are the individual axial mode-shape
functions corresponding to constituent waveguides (i.e.,

regions I, II, and III) defined by (15) and K1−3 are the
constants necessary to meet strain and displacement boundary
conditions at the interfaces of these individual waveguides.

Proper dispersion engineering of the waveguide can result
in the creation of vibration modes �i (z) with evanescent
constituents in regions II and/or III. Such modes benefit from
the exponential decay in the axial mode-shape functions across
the length, which enables the acoustic energy localization in
region I and without the need for geometrical suspension.
This technique has been previously demonstrated in thickness-
mode aluminum nitride (AlN) BAW resonators for enhance-
ment of k2

t Q and suppression of spurious modes, through
engineering waveguide stack (i.e., addition of metallic border
rings) [31]–[35].

In this paper, the required dispersion engineering is achieved
through changing the width of the waveguide across its length.
Unlike thickness-mode counterparts where dispersion charac-
teristics of the concerned guided wave vary with thickness
variation, the dispersion characteristics of guided waves with
the in-plane cross-sectional vibration pattern vary with respect
to the changes in the waveguide width. Therefore, the desired
dispersion engineering for acoustic energy localization can be
achieved through the simple lithographical variation of the
waveguide geometry without the need for addition of a new
material.

Depending on the dispersion type of the corresponding
guided wave, different engineering strategies can be used to
create high-Q resonance modes. In this section, two exten-
sional guided waves with different dispersion types are used
to demonstrate the energy localization and analytical mode
synthesis concept. Fig. 4(a) and (b) demonstrates the disper-
sion characteristics of the third and first width-extensional
(WE) guided waves, respectively, for waveguides with dif-
ferent widths (i.e., W3 < W1 < W2) and 20-μm thickness.
As evident, WE3 wave manifests dispersion type-I, while WE1
wave shows both type-II and type-I dispersion characteristics.
Guided waves with group velocity (vg = δω/δk > 0) are
known to demonstrate type-I dispersion characteristics, while
guided waves with (vg < 0) demonstrate type-II dispersion
characteristics. As shown in Fig. 4(b), WE1 wave demonstrates
type-I as well as type-II dispersion.

A. Type-I Dispersion Engineering

For the guided waves with dispersion type-I [Fig. 4(a)],
acoustic energy localization can be achieved through enforcing
the excitation of a standing-evanescent solution in region III at
the desired operation frequency f0, thus yielding an exponen-
tially decaying axial mode-shape function (i.e., �i,3(|z|) =
e−ki,3 (|z|−z1−z2), z ∈ Region III). Furthermore, to ensure a
uniform energy distribution in region I, where the transducer
will be placed, the waveguide geometry should be engineered
to enforce the excitation of guided wave with infinitely long
wavelength (i.e., k = 0) in region I, thus yielding a constant
mode-shape function (i.e., �i,1(|z|) = 1). This ensures the
realization of a “piston-shaped” vibration mode at desired
frequency f0. Benefiting from the uniform energy distribution
in the active transduction region, resonators with piston-shaped
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Fig. 4. Dispersion characteristics for guided waves exhibiting (a) type-I
dispersion and (b) type-II and type-I dispersive characteristics. Changing the
width of the waveguide (Fig. 3) transforms the dispersion characteristics of
guided waves. The dispersion curves for S1 wave are demonstrated for the
three regions of the dispersion-engineered waveguide demonstrated in Fig. 3.
The cross-plane at frequency f0 intersects dispersion branches at various
points, highlighted by stars. These points correspond to propagating, standing-
evanescent, and propagating-evanescent guided waves in regions I–III. The
complex-k dispersion characteristics of region III (shown in green) originates
from the zero-group velocity point (kZG) of its corresponding real-k dispersion
characteristics branch.

vibration modes provide enhanced k2
t and power handling [35].

Finally, to satisfy the required displacement and strain con-
tinuity across the waveguide, �i,1 and �i,3 should be cou-
pled through a propagating wave with finite wavelength (i.e.,
0 < k2 ∈ R) in region II [i.e., �i,2 = cos(ki,2)].

The analytical design procedure for the synthesis of such
vibration mode at frequency f0 consists of identification of
the width and length of constituting regions (i.e., regions I, II,
and III). While the width of region I (i.e., W1) must be
defined to ensure the existence of a guided wave with k = 0,
the choice of W2 and W3 should only suffice the existence of
propagating and standing-evanescent waves at f0. The axial
mode-shape function of the dispersion-engineered waveguide
can be written as

�WE3(z)=
⎧
⎨

⎩

K1 z ∈ I
K2 cos(kWE3,2(|z| − z1)) z ∈ II
K3e−kWE3,3(|z|−z1−z2) z ∈ III

⎫
⎬

⎭
(17-a, b, c)

Fig. 5. Axial mode-shape function for the synthesized vibration mode with
type-I dispersion characteristics.

where K1, K2, and K3 are the vibration amplitudes and kWE3,2
and ikWE3,3 are the corresponding wavenumbers for the guided
wave at f0 in regions II and III, respectively. 2z1, z2, and z3
denote the lengths of regions I, II, and III in the engineered
waveguide, with the origin for (17) being the center of the
device (Fig. 3).

Considering (17-b) and (17-c), the displacement continuity
at the interface of regions II and III (i.e., z = z1 +z2) requires

K2 · cos (kWE3,2(z2)) = K3. (18)

Similarly, the continuity of strain at the interface of
regions II and III requires

K2 · kWE3,2 sin (kWE3,2(z2)) = K3 · kWE3,3. (19)

These systems of equations [(18) and (19)] result in a closed-
form solution to calculate the length of region II as

z2 = 1

kWE3,2
tan

−1 (
kWE3,3

kWE3,2

)

. (20)

The length of region III (i.e., z3) is not derived from a
closed-form equation and is chosen appropriately long to help
in the sufficient decay of the energy profile, thus realizing
the energy localization in region I, without the need for
geometrical suspension. Fig. 5 demonstrates the axial mode
shape for the “piston-shaped” mode realized using dispersion
engineering for WE3 guided wave with type-I dispersion.

Finally, it is worth noting that in the piston-shaped mode,
the length of central region (i.e., 2z1) is a degree of freedom
and can be chosen depending on the requirement of transduc-
tion area or limitations for the overall form factor of the device.

B. Type-II Dispersion Engineering

In theory, a similar strategy as discussed in Section III-A can
be used to create “piston-shaped” modes for guided waves with
type-II dispersion. However, opting for this approach in single-
crystal silicon (SCS) waveguides is challenging considering
the limited range of wavenumbers in the standing-evanescent
section of the S1 branch. Fig. 6 shows the comparison of the
standing-evanescent branches of AlN and 〈110〉 silicon plates
with similar frequencies of S1 wave at k = 0. It is evident
that the maximum wavenumber in the standing-evanescent
section in 〈110〉 silicon is |kmax,Si| ∼= 0.0024 μm−1, which
is significantly smaller in magnitude compared to that of AlN
(i.e., |kmax,AlN| ∼= 0.0082 μm−1). Such a small wavenum-
ber translates to the slow rate of exponential decay in the
amplitude of axial mode-shape function �(z) and imposes
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Fig. 6. Comparison of the dispersion characteristics of standing-evanescent
S1 waves in AlN and Si 〈110〉 plates with similar frequencies at k = 0. The
maximum value for k in Si 〈110〉 is nearly four times smaller compared to
AlN counterpart.

the need for very long flanks (i.e., region III waveguides)
to sufficiently attenuate the acoustic energy density at the
anchoring regions. Also, unlike the type-I case where region III
can only support a standing-evanescent wave at f0, in type-II
dispersion characteristic, the standing-evanescent waves are
accompanied by propagating wave with large wavenumbers.
This can be observed in Fig. 4(b) where a cut-plane at f0
intersects the dispersion branch corresponding to region III
in two points with real and imaginary wavenumbers. These
points highlighted through stars correspond to propagating
and evanescent guided waves at f0. The excitation of a
propagating wave in region III is highly undesirable as it
results in energy leakage out of active region I and reduces the
resonator Q. Furthermore, anchoring/terminating region III at
any point over its length leads to the destructive reflection of
the propagating wave back into active region I. This reflection
induces ripples in the axial mode-shape function in region I,
hence resulting in degradation of k2

t and power handling.
To surpass these challenges, an alternative energy localiza-

tion technique can be used through exploiting the propagating-
evanescent extension of the S1 branch (i.e., k = k1 + ik2;
k1 and k2 ∈ R). In this technique, a propagating wave with
small wavenumber in region I is coupled to a propagating-
evanescent wave in region III, through a standing-evanescent
wave in region II, thus resulting in a unique vibration mode
with efficient energy localization.

Opting for proper width on region III, the dispersion char-
acteristics of the guided wave can be engineered to have a
complex wavenumber with large imaginary part at the desired
frequency f0. Benefiting from much large imaginary part
compared to standing-evanescent counterpart, propagating-
evanescent waves enable the energy localization in small
form factors in an SCS waveguides. Furthermore, the essen-
tial nature of propagating-evanescent waves facilitates the
formation of nodal points that may further help to reduce
the overall length of region III, while sustaining a high Q.
Fig. 4(b) demonstrates the respective dispersion characteristics
of the first WE guided wave in 〈100〉 silicon waveguides with
different widths (i.e., W3 < W1 < W2) that represents type-II
and type-I dispersion.

The analytical design procedure to realize a resonator
at frequency f0 consists of the identification of the width

and length of constituting regions I–III. Similar to dispersion
type-I counterparts, W2 should be chosen to ensure the exis-
tence of standing-evanescent wave at f0. Also, W3 should be
chosen to enforce the fZG of S1 branch to be larger than f0,
thus ensuring the existence of propagating-evanescent solution
in region III at f0. The axial mode-shape function (�WE1(z))
for the dispersion-engineered resonator operating in the WE1
mode can be written as
⎧
⎪⎪⎨

⎪⎪⎩

K1 cos(kWE1,1z) z ∈ I
K2e−kWE1,2(|z|−z1) z ∈ II
K3e−kWE1,3(|z|−z1−z2+z0)

× cos(kZG,3(|z| − z1 − z2 + z0)) z ∈ III

⎫
⎪⎪⎬

⎪⎪⎭

(21-a, b, c)

where K1, K2, and K3 are the vibration amplitudes and
kWE1,1, ikWE1,2, and kZG,3 + ikWE1,3 are the corresponding
wavenumbers for the guided waves at f0 in regions I, II,
and III, respectively. z0 is the auxiliary correction term to
facilitate appropriate displacement and strain continuity over
the waveguide length.

Considering (21-a) and (21-b), the displacement continuity
at the interface of regions I and II (i.e., z = z1) requires

K1 · cos (kWE1,1(z1)) = K2. (22)

Similarly, the continuity of strain at the interface of regions I
and II requires

K1 · kWE1,1 sin (kWE1,2(z1)) = K2 · kWE1,2. (23)

These systems of equations [(22) and (23)] result in a closed-
form solution to calculate the length of region I as

z1 = 1

kWE1,1
tan

−1 (
kWE1,2

kWE1,1

)

. (24)

Considering (21-b) and (21-c), the displacement continuity
at the interface of regions II and III (i.e., z = z1 + z1) requires

K2e−kWE1,2(z2) = K3e−kWE1,3(z0) cos(kZG,3z0). (25)

Similarly, the continuity of strain at the interface of regions II
and III requires

K2 · kWE1,2e−kWE1,2(z2)

= K3 · e−kWE1,3(z0)kWE1,3 cos(kZG,3z0)

+ K3 · e−kWE1,3(z0)kZG,3sin(kZG,3z0). (26)

Replacing (24) in (25), z0 can be calculated from

z0 = 1

kZG,3
tan−1

(
kWE1,2 − kWE1,3

kZG,3

)

. (27)

Also, considering (25) and (26), it is worth noting that the
there is no unique solution for z2; i.e., for any z2 value, there
exists a vibration amplitude K3 to guarantee (25) and (26)
hold.

Finally, z3 is defined to benefit from the inherent
nodal points of the propagating-evanescent guided wave in
region III as

kZG,3(z3 + z0) = nπ/2. (28)

Such a z3 ensures a zero displacement at the termination face
of the waveguide, where it is anchored to the substrate.
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Fig. 7. Axial mode-shape function for the synthesized vibration mode with
type-II and type-I dispersion characteristics. Nodal points in region III are
marked in red stars.

It is worth noting that the proposed analytical design pro-
cedure for type-II dispersion targets the energy localization
through both evanescent waves in regions II and III, as well
as geometrical suspension (i.e., nodal point) in region III
further enhancing Q. The relative contribution of each of
these techniques in the efficiency of energy localization and
resonator Q can be deliberately controlled by z2. Propagating
waves with large wavenumbers are in regions I and II are
ignored in (21) for the ease of analytical derivation of the
closed-form solution. Numerical methods can be used to solve
resulting equations considering waves with large wavenum-
bers. Fig. 7 demonstrates the resulting axial mode-shape
function of the mode having type-II dispersion characteristics.

The experimental methodology for the verification of design
procedure and extensive measurement data on proof-of-
concept resonators is presented in Part II.
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